If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2q^2-139+20=0
We add all the numbers together, and all the variables
2q^2-119=0
a = 2; b = 0; c = -119;
Δ = b2-4ac
Δ = 02-4·2·(-119)
Δ = 952
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{952}=\sqrt{4*238}=\sqrt{4}*\sqrt{238}=2\sqrt{238}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{238}}{2*2}=\frac{0-2\sqrt{238}}{4} =-\frac{2\sqrt{238}}{4} =-\frac{\sqrt{238}}{2} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{238}}{2*2}=\frac{0+2\sqrt{238}}{4} =\frac{2\sqrt{238}}{4} =\frac{\sqrt{238}}{2} $
| (4+7x)+53+39=180 | | 2(3x+7=81 | | 10x+20=540 | | m3+5=8 | | 10w^2+19w-15=0 | | 2x²-30x+108=0 | | (5x-18)4=-36 | | 6x+4-2x=-8 | | m3+ 5=8 | | d−9=67 | | -7y=18-5y | | w+4/5=81/3 | | 3d^2-4d=0 | | 5(m-4)=25 | | 44+s+655=180 | | -4/7+2/7x-14x=4/7 | | 2x^2+56x=1920 | | Y=-5x+72 | | 6x−5=43 | | 2/m=44 | | 6=3z−3 | | 45+(52+x)+90=180 | | x=-16-96-16 | | 6q+q=7 | | (x+51)+60+80=180 | | 38=(x-6)2 | | j/3=94.50 | | 2x+38+3x+x+20+71=360 | | 0,25(24x+12)=6(x+0.5) | | 3j=94.50. | | 10=3(c−6)+1 | | 14=5y+2y |